Magnetic resonance imaging Category
PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images
Jun. 23, 2021—Leon Y. Cai, Qi Yang, Colin B. Hansen, Vishwesh Nath, Karthik Ramadass, Graham W. Johnson, Benjamin N. Conrad, Brian D. Boyd, John P. Begnoche, Lori L. Beason-Held, Andrea T. Shafer, Susan M. Resnick, Warren D. Taylor, Gavin R. Price, Victoria L. Morgan, Baxter P. Rogers, Kurt G. Schilling, Bennett A. Landman. PreQual: An automated pipeline...
Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning
Dec. 26, 2020—Bermudez, C., Remedios, S. W., Ramadass, K., McHugo, M., Heckers, S., Huo, Y., & Landman, B. A. (2020). Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning. Journal of Medical Imaging, 7(6), 064004. Full Text: https://pubmed.ncbi.nlm.nih.gov/33381612/ Abstract Purpose: Generalizability is an important problem in deep neural networks, especially with variability of data acquisition in...
A cross-platform informatics system for the Gut Cell Atlas: integrating from clinical, anatomical and histological data
Dec. 6, 2020—Shunxing Bao, Sophie Chiron, Yucheng Tang, Cody N. Heiser, Austin N. Southard-Smith, Ho Hin Lee, Marisol A. Ramirez, Yuankai Huo, Mary K. Washington, Elizabeth A. Scoville, Joseph T. Roland, Qi Liu, Ken S. Lau, Keith T. Wilson, Lori A. Coburn, Bennett A. Landman, A cross-platform informatics system for the Gut Cell Atlas: integrating from clinical,...
Joint analysis of structural connectivity and cortical surface features: correlates with mild traumatic brain injury
Nov. 18, 2020—Cailey I. Kerley, Leon Y. Cai, Chang Yu, Logan M. Crawford, Jason M. Elenberger, Eden S. Singh, Kurt G. Schilling, Katherine S. Aboud, Bennett A. Landman, Tonia S. Rex, “Joint analysis of connectivity and cortical surface features: correlates with mild traumatic brain injury.” (2021, Feb) SPIE Medical Imaging. San Diego, CA. (Accepted) Full text: NIHMSID, arXiv...
Harmonizing 1.5 T/3T diffusion weighted MRI through development of deep learning stabilized microarchitecture estimators
Jan. 17, 2020—Nath V, Remedios S, Parvathaneni P, Hansen CB, Bayrak RG, Bermudez C, Blaber JA, Schilling KG, Janve VA, Gao Y, Huo Y. Harmonizing 1.5 T/3T diffusion weighted MRI through development of deep learning stabilized microarchitecture estimators. In Medical Imaging 2019: Image Processing 2019 Mar 15 (Vol. 10949, p. 109490O). International Society for Optics and Photonics....
Tractography reproducibility challenge with empirical data (TRAceD): The 2017 ISMRM diffusion study group challenge
Jan. 17, 2020—Nath V, Schilling KG, Parvathaneni P, Huo Y, Blaber JA, Hainline AE, Barakovic M, Romascano D, Rafael‐Patino J, Frigo M, Girard G. Tractography reproducibility challenge with empirical data (traced): The 2017 ISMRM diffusion study group challenge. Journal of Magnetic Resonance Imaging. 2020 Jan;51(1):234-49. Full text: https://www.ncbi.nlm.nih.gov/pubmed/31179595 Abstract BACKGROUND: Fiber tracking with diffusion-weighted MRI has become an...
Using deep learning for a diffusion-based segmentation of the dentate nucleus and its benefits over atlas-based methods
Dec. 6, 2019—Noguera, C. B., Bao, S., Petersen, K. J., Lopez, A. M., Reid, J., Plassard, A. J., … & Landman, B. A. (2019). Using deep learning for a diffusion-based segmentation of the dentate nucleus and its benefits over atlas-based methods. Journal of Medical Imaging, 6(4), 044007. Full Text: https://www.ncbi.nlm.nih.gov/pubmed/31824980 Abstract The dentate nucleus (DN) is a...
Generalizing Deep Whole Brain Segmentation for Pediatric and Post-Contrast MRI with Augmented Transfer Learning
Aug. 13, 2019—Bermudez, C., Blaber, J., Remedios, S.W., Reynolds, J.E., Lebel, C., McHugo, M., Heckers, S., Huo, Y., Landman, B.A. Generalizing Deep Whole Brain Segmentation for Pediatric and Post-Constrast MRI with Augmented Transfer Learning. SPIE Medical Imaging: Image Processing 2020. Houston, TX. Full Text: NIHMSID Abstract Generalizability is an important problem in deep neural networks, especially in...
Improved gray matter surface based spatial statistics in neuroimaging studies
May. 21, 2019—Prasanna Parvathaneni; Ilwoo Lyu; Yuankai Huo; Baxter P. Rogers; Kurt G. Schilling; Vishwesh Nath; Justin A Blaber; Allison E Hainline; Adam W Anderson; Neil D. Woodward; Bennett A Landman. “Improved gray matter surface based spatial statistics in neuroimaging studies.” Magnetic Resonance Imaging, 61, 285-295, 2019. Full text Abstract Neuroimaging often involves acquiring high-resolution anatomical images along with...
Opportunities for Mining Radiology Archives for Pediatric Control Images
Dec. 17, 2017—Bermudez, C., Probst, V. N., Davis, L. T., Lasko, T., & Landman, B. A. (2017). Opportunities for Mining Radiology Archives for Pediatric Control Images. arXiv preprint arXiv:1712.02728. Full Text: https://arxiv.org/ftp/arxiv/papers/1712/1712.02728.pdf Abstract A large database of brain imaging data from healthy, normal controls is useful to describe physiologic and pathologic structural changes at a population scale....