Skip to main content

Neuroimaging Category

The impact of family structure and common environment on heritability estimation for neuroimaging genetics studies using SOLAR

Jun. 20, 2014—Mary Ellen Koran, Bo Li, Neda Jahanshad, Tricia A. Thornton-Wells, David C. Glahn, Paul M. Thompson, John Blangero, Thomas E. Nichols, Peter Kochunov, Bennett A. Landman, “The impact of family structure and common environment on heritability estimation for neuroimaging genetics studies using SOLAR”. Journal of Medical Imaging, 2014 Jun 27;1(1):014005 Full Text: https://www.ncbi.nlm.nih.gov/pubmed/25558465 Abstract Imaging...

Read more


Evaluation of Statistical Inference on Empirical Resting State fMRI.

May. 31, 2014—Xue Yang, Hakmook Kang, Allen T. Newton, Bennett A. Landman, “Evaluation of Statistical Inference on Empirical Resting State fMRI.” IEEE Transactions on Biomedical Engineering. IEEE Trans Biomed Eng. 2014 Apr;61(4):1091-9. PMC24658234† Full text: https://www.ncbi.nlm.nih.gov/pubmed/24658234 Abstract Modern statistical inference techniques may be able to improve the sensitivity and specificity of resting state functional magnetic resonance imaging...

Read more


A brain MRI atlas of the common squirrel monkey, Saimiri sciureus

Feb. 1, 2014—Yurui Gao, Shweta P. Khare, Swetasudha Panda, Ann S Choe, Iwona Stepniewska, Xia Li, Zhoahua Ding, Adam Anderson, Bennett A. Landman, “A brain MRI atlas of the common squirrel monkey, Saimiri sciureus.” In Proceedings of the SPIE Medical Imaging Conference. San Diego, California, February 2014. Oral Presentation. † Full Text: https://www.ncbi.nlm.nih.gov/pubmed/24817811 Abstract The common squirrel...

Read more


Out-of-Atlas Likelihood Estimation using Multi-Atlas Segmentation.

Apr. 15, 2013—Andrew J. Asman, Lola Chambless, Reid Thompson, and Bennett A. Landman. “Out-of-Atlas Likelihood Estimation using Multi-Atlas Segmentation.” Medical Physics. 2013 Apr;40(4) PMC23556928 † Full-Text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625241/   Abstract Purpose: Multi-atlas segmentation has been shown to be highly robust and accurate across an extraordinary range of potential applications. However, it is limited to the segmentation of structures...

Read more


Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging.

Apr. 15, 2013—Carolyn B. Lauzon, Andrew J. Asman, Michael L. Esparza, Scott S. Burns, Qiuyun Fan, Yurui Gao, Adam W. Anderson, Nicole Davis, Laurie E. Cutting, Bennett A. Landman. “Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging.” PLoS ONE. 2013 Apr 30;8(4) PMC23637895 † Full Text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640065/   Abstract Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural...

Read more


Assessment of Bias in MRI Diffusion Tensor Imaging Parameters Using SIMEX

Mar. 2, 2013—Carolyn B. Lauzon, Ciprian Crainiceanu, Brian C. Caffo, Bennett A. Landman, “Assessment of Bias in MRI Diffusion Tensor Imaging Parameters Using SIMEX”, Magnetic Resonance in Medicine. 2013 Mar 1;69(3):891-902. PMC22611000 † Full Text: https://www.ncbi.nlm.nih.gov/pubmed/22611000 Abstract: Diffusion tensor imaging enables in vivo investigation of tissue cytoarchitecture through parameter contrasts sensitive to water diffusion barriers at the...

Read more


Correcting Power and p-Value Calculations for Bias in Diffusion Tensor Imaging.

Mar. 2, 2013—Carolyn B. Lauzon and Bennett A. Landman, “Correcting Power and p-Value Calculations for Bias in Diffusion Tensor Imaging.” Magnetic Resonance Imaging. 2013 Mar 2. pii: S0730-725X(13) PMC23465764 † Full Text: https://www.ncbi.nlm.nih.gov/pubmed/?term=Correcting+Power+and+p-Value+Calculations+for+Bias+in+Diffusion+Tensor+Imaging. Abstract: Diffusion tensor imaging (DTI) provides quantitative parametric maps sensitive to tissue microarchitecture (e.g., fractional anisotropy, FA). These maps are estimated through computational processes and...

Read more


Integration of XNAT/PACS, DICOM, and Research Software for Automated Multi-modal Image Analysis

Feb. 1, 2013—Yurui Gao, Scott S. Burns, Carolyn B. Lauzon, Andrew Fong, David A. Twillie, Michael Wirt, Marc A. Zola, Bret W. Logan, Adam W. Anderson, Bennett A. Landman. “Integration of XNAT/PACS, DICOM, and Research Software for Automated Multi-modal Image Analysis.” In Proceedings of the SPIE Medical Imaging Conference. Orlando, Florida, February 2013. Oral Presentation. † Full...

Read more


System for Integrated Neuroimaging Analysis and Processing of Structure.

Jan. 11, 2013—Bennett A. Landman, John A. Bogovic, Aaron Carass, Min Chen, Snehashis Roy, Navid Shiee, Zhen Yang, Bhaskar Kishore, Dzung Pham, Pierre-Louis Bazin, Susan M. Resnick, and Jerry L. Prince. “System for Integrated Neuroimaging Analysis and Processing of Structure.” Neuroinformatics. 2013 Jan;11(1):91-10 PMC22932976 † Full Text: https://www.ncbi.nlm.nih.gov/pubmed/22932976 Abstract: Mapping brain structure in relation to neurological development,...

Read more


Out-of-Atlas Labeling: A Multi-Atlas Approach to Cancer Segmentation

Dec. 31, 2012—Andrew J. Asman and Bennett A. Landman, “Out-of-Atlas Labeling: A Multi-Atlas Approach to Cancer Segmentation”, In Proceedings of the 2012 International Symposium on Biomedical Imaging (ISBI). Barcelona, Spain† Full Text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892947/   Abstract Conventional automated segmentation techniques for magnetic resonance imaging (MRI) fail to perform in a robust and consistent manner when brain anatomy differs...

Read more