Skip to main content

Lung Screening CT Category

Inter-vendor harmonization of CT reconstruction kernels using unpaired image translation

Dec. 1, 2023—Aravind R. Krishnan, Kaiwen Xu, Thomas Li, Chenyu Gao, Lucas W. Remedios, Praitayini Kanakaraj, Ho Hin Lee, Shunxing Bao, Kim L. Sandler, Fabien Maldonado, Ivana Išgum, and Bennett A. Landman “Inter-vendor harmonization of CT reconstruction kernels using unpaired image translation”, Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 129261D (2 April 2024); https://doi.org/10.1117/12.3006608 Abstract The reconstruction kernel in computed tomography (CT) generation determines the texture of the image. Consistency...

Read more


Quantifying emphysema in lung screening computed tomography with robust automated lobe segmentation

Sep. 1, 2023—Thomas Z. Li, Ho Hin Lee, Kaiwen Xu, Riqiang Gao, Benoit M. Dawant, Fabien Maldonado, Kim L. Sandler, Bennett A. Landman. Journal of Medical Imaging 10(4), 044002 (2023), doi: 10.1117/1.JMI.10.4.044002. Full Text Abstract Introduction: Anatomy-based quantification of emphysema in a lung screening cohort has the potential to improve lung cancer risk stratification and risk communication....

Read more


Reducing uncertainty in cancer risk estimation for patients with indeterminate pulmonary nodules using an integrated deep learning model

Aug. 31, 2023—Gao R, Li T, Tang Y, Xu K, Khan M, Kammer M, Antic SL, Deppen S, Huo Y, Lasko TA, Sandler KL, Maldonado F, Landman BA Paper: https://pubmed.ncbi.nlm.nih.gov/36198225/ Code: https://github.com/MASILab/STrUDeL Abstract Objective: Patients with indeterminate pulmonary nodules (IPN) with an intermediate to a high probability of lung cancer generally undergo invasive diagnostic procedures. Chest computed tomography image...

Read more


Body Composition Assessment with Limited Field-of-view Computed Tomography: A Semantic Image Extension Perspective. Medical Image Analysis

Aug. 31, 2023—Kaiwen Xu, Thomas Li, Mirza S. Khan, Riqiang Gao, Sanja L. Antic, Yuankai Huo, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman Paper: https://www.sciencedirect.com/science/article/pii/S1361841523001123 Code: https://github.com/MASILab/S-EFOV Abstract Field-of-view (FOV) tissue truncation beyond the lungs is common in routine lung screening computed tomography (CT). This poses limitations for opportunistic CT-based body composition (BC) assessment as key anatomical structures...

Read more


AI Body Composition in Lung Cancer Screening: Added Value Beyond Lung Cancer Detection

Aug. 31, 2023—Kaiwen Xu, Mirza S. Khan, Thomas Z. Li, Riqiang Gao, James G. Terry, Yuankai Huo, Thomas A. Lasko, John Jeffrey Carr, Fabien Maldonado, Bennett A. Landman, Kim L. Sandler Paper: https://pubs.rsna.org/doi/epdf/10.1148/radiol.222937 Abstract Background An artificial intelligence (AI) algorithm has been developed for fully automated body composition assessment of lung cancer screening noncontrast low-dose CT of the...

Read more


Extending the value of routine lung screening CT with quantitative body composition assessment

Nov. 28, 2022—Kaiwen Xu, Riqiang Gao, Yucheng Tang, Steve A. Deppen, Kim L. Sandler, Michael N. Kammer, Sanja L. Antic, Fabien Maldonado, Yuankai Huo, Mirza S. Khan, Bennett A. Landman Abstract Certain body composition phenotypes, like sarcopenia, are well established as predictive markers for post-surgery complications and overall survival of lung cancer patients. However, their association with...

Read more


Cancer Risk Estimation Combining Lung Screening CT with Clinical Data Elements

Dec. 9, 2021—Riqiang Gao, Yucheng Tang, Mirza S. Khan, Kaiwen Xu, Alexis B. Paulson, Shelbi Sullivan, Yuankai Huo, Stephen Deppen, Pierre P. Massion, Kim L. Sandler, Bennett A. Landman, Cancer Risk Estimation Combining Lung Screening CT with Clinical Data Elements, Radiology: Artificial Intelligence (2021). Full Text: https://pubs.rsna.org/doi/10.1148/ryai.2021210032 Abstract Purpose: To develop a model to estimate lung cancer risk using lung...

Read more


Technical Report: Quality Assessment Tool for Machine Learning with Clinical CT

Aug. 28, 2021—Riqiang Gao, Mirza S. Khan, Yucheng Tang, Kaiwen Xu, Steve Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman, Technical Report: Quality Assessment Tool for Machine Learning with Clinical CT, Technical report, 2021. Full text: https://arxiv.org/abs/2107.12842 Abstract Image Quality Assessment (IQA) is important for scientific inquiry, especially in medical imaging and machine learning....

Read more


Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing Imputation Perspective

Aug. 28, 2021—Riqiang Gao, Yucheng Tang, Kaiwen Xu, Ho Hin Lee, Steve Deppen, Kim Sandler, Pierre Massion, Thomas A. Lasko, Yuankai Huo, Bennett A. Landman, Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing Imputation Perspective, MICCAI, 2021. Full text: https://arxiv.org/abs/2107.11882 Abstract Data from multi-modality provide complementary information in clinical prediction, but missing data in clinical cohorts limits...

Read more


Deep Multi-path Network Integrating Incomplete Biomarker and Chest CT Data for Evaluating Lung Cancer Risk

Nov. 25, 2020—Riqiang Gao, Yucheng Tang, Kaiwen Xu, Michael N. Kammer, Sanja L. Antic, Steve Deppen, Kim L. Sandler, Pierre P. Massion, Yuankai Huo, Bennett A. Landman,Deep Multi-path Network Integrating Incomplete Biomarker and Chest CT Data for Evaluating Lung Cancer Risk, SPIE, Medical Imaging, 2021.  Full text: https://arxiv.org/abs/2010.09524 Abstract Clinical data elements (CDEs) (e.g., age, smoking history), blood...

Read more