Author
Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning
Dec. 26, 2020—Bermudez, C., Remedios, S. W., Ramadass, K., McHugo, M., Heckers, S., Huo, Y., & Landman, B. A. (2020). Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning. Journal of Medical Imaging, 7(6), 064004. Full Text: https://pubmed.ncbi.nlm.nih.gov/33381612/ Abstract Purpose: Generalizability is an important problem in deep neural networks, especially with variability of data acquisition in...
Using deep learning for a diffusion-based segmentation of the dentate nucleus and its benefits over atlas-based methods
Dec. 6, 2019—Noguera, C. B., Bao, S., Petersen, K. J., Lopez, A. M., Reid, J., Plassard, A. J., … & Landman, B. A. (2019). Using deep learning for a diffusion-based segmentation of the dentate nucleus and its benefits over atlas-based methods. Journal of Medical Imaging, 6(4), 044007. Full Text: https://www.ncbi.nlm.nih.gov/pubmed/31824980 Abstract The dentate nucleus (DN) is a...
Generalizing Deep Whole Brain Segmentation for Pediatric and Post-Contrast MRI with Augmented Transfer Learning
Aug. 13, 2019—Bermudez, C., Blaber, J., Remedios, S.W., Reynolds, J.E., Lebel, C., McHugo, M., Heckers, S., Huo, Y., Landman, B.A. Generalizing Deep Whole Brain Segmentation for Pediatric and Post-Constrast MRI with Augmented Transfer Learning. SPIE Medical Imaging: Image Processing 2020. Houston, TX. Full Text: NIHMSID Abstract Generalizability is an important problem in deep neural networks, especially in...
Anatomical context improves deep learning on the brain age estimation task
Jul. 12, 2019—Bermudez, C., Plassard, A. J., Chaganti, S., Huo, Y., Aboud, K. E., Cutting, L. E., … & Landman, B. A. (2019). Anatomical context improves deep learning on the brain age estimation task. Magnetic Resonance Imaging. Full Text: https://www.ncbi.nlm.nih.gov/pubmed/31247249 Abstract Deep learning has shown remarkable improvements in the analysis of medical images without the need for...
Learning Implicit Brain MRI Manifolds with Deep Learning
Dec. 22, 2017—Bermudez, C., Plassard, A.J., Davis, T.L., Newton, A.T., Resnick, S.M., and Landman, B.A. (2017) “Learning implicit brain MRI manifolds with deep learning.” arXiv preprint arXiv:1801.01847 Full Text: https://arxiv.org/pdf/1801.01847.pdf Abstract An important task in image processing and neuroimaging is to extract quantitative information from the acquired images in order to make observations about the presence of disease...
Opportunities for Mining Radiology Archives for Pediatric Control Images
Dec. 17, 2017—Bermudez, C., Probst, V. N., Davis, L. T., Lasko, T., & Landman, B. A. (2017). Opportunities for Mining Radiology Archives for Pediatric Control Images. arXiv preprint arXiv:1712.02728. Full Text: https://arxiv.org/ftp/arxiv/papers/1712/1712.02728.pdf Abstract A large database of brain imaging data from healthy, normal controls is useful to describe physiologic and pathologic structural changes at a population scale....
Accurate Age Estimation in a Pediatric Population Using Deep Learning on T1‐weighted MRI Structural Features
May. 15, 2017—Citation: Bermudez, C. et.al. Accurate Age Estimation in a Pediatric Population Using Deep Learning on T1‐weighted MRI Structural Features. Frontiers in Biomedical Imaging Science VI. May 2017. Abstract. Abstrract It is well known that there are structural changes that occur in the brain with age. However, there are insufficient imaging biomarkers that reliably describe structural...