Deep Learning Category
Internal-transfer Weighting of Multi-task Learning for Lung Cancer Detection
Dec. 5, 2019—Yiyuan Yang, Riqiang Gao*, Yucheng Tang, Sanja L. Antic, Steve Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman, “Internal-transfer Weighting of Multi-task Learning for Lung Cancer Detection,” SPIE MI:IP 2020. Houston, TX. [full text] Abstract Deep learning has achieved many successes in medical imaging, including lung nodule segmentation and lung cancer prediction on...
Deep Multi-task Prediction of Lung Cancer and Cancer-free Progression from Censored Heterogenous Clinical Imaging
Dec. 5, 2019—Riqiang Gao, Lingfeng Li, Yucheng Tang, Sanja L. Antic, Alexis B. Paulson, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman, “Deep Multi- task Prediction of Lung Cancer and Cancer-free Progression from Censored Heterogenous Clinical Imaging,” SPIE MI:IP 2020. Houston, TX. [full text] Abstract Annual low dose computed tomography (CT) lung screening is currently advised for individuals...
Distanced LSTM: Time-Distanced Gates in Long Short-Term Memory Models for Lung Cancer Detection
Oct. 13, 2019—Gao, R., Huo, Y., Bao, S., Tang, Y., Antic, S.L., Epstein, E.S., Balar, A.B., Deppen, S., Paulson, A.B., Sandler, K.L. and Massion, P.P., 2019, October. Distanced LSTM: Time-Distanced Gates in Long Short-Term Memory Models for Lung Cancer Detection. In International Workshop on Machine Learning in Medical Imaging (pp. 310-318). Springer, Cham. [Full Text] Abstract The field of...
Generalizing Deep Whole Brain Segmentation for Pediatric and Post-Contrast MRI with Augmented Transfer Learning
Aug. 13, 2019—Bermudez, C., Blaber, J., Remedios, S.W., Reynolds, J.E., Lebel, C., McHugo, M., Heckers, S., Huo, Y., Landman, B.A. Generalizing Deep Whole Brain Segmentation for Pediatric and Post-Constrast MRI with Augmented Transfer Learning. SPIE Medical Imaging: Image Processing 2020. Houston, TX. Full Text: NIHMSID Abstract Generalizability is an important problem in deep neural networks, especially in...
Anatomical context improves deep learning on the brain age estimation task
Jul. 12, 2019—Bermudez, C., Plassard, A. J., Chaganti, S., Huo, Y., Aboud, K. E., Cutting, L. E., … & Landman, B. A. (2019). Anatomical context improves deep learning on the brain age estimation task. Magnetic Resonance Imaging. Full Text: https://www.ncbi.nlm.nih.gov/pubmed/31247249 Abstract Deep learning has shown remarkable improvements in the analysis of medical images without the need for...
Learning 3D White Matter Microstructure from 2D Histology
Apr. 1, 2019—Histological analysis is typically the gold standard for validating measures of tissue microstructure derived from magnetic resonance imaging (MRI) contrasts. However, most histological investigations are inherently 2-dimensional (2D), due to increased field-of-view, higher in-plane resolutions, ease of acquisition, decreased costs, and a large number of available contrasts compared to 3-dimensional (3D) analysis. Because of this,...
Montage based 3D Medical Image Retrieval from Traumatic Brain Injury Cohort using Deep Convolutional Neural Network
Dec. 10, 2018—Cailey I. Kerley, Yuankai Huo, Shikha Chaganti, Shunxing Bao, Mayur B. Patel, Bennett A. Landman. “Montage based 3D Medical Image Retrieval from Traumatic Brain Injury Cohort using Deep Convolutional Neural Network.” In SPIE Medical Imaging, International Society for Optics and Photonics, 2019. Full text: NIHMSID Abstract Brain imaging analysis on clinically acquired computed tomography (CT) is essential...
Towards Machine Learning Prediction of Deep Brain Stimulation (DBS) Intra-operative Efficacy Maps
Dec. 10, 2018—Bermudez, C., Rodriguez, W., Huo, Y., Hainline, A. E., Li, R., Shults, R., … & Landman, B. A. (2018). Towards Machine Learning Prediction of Deep Brain Stimulation (DBS) Intra-operative Efficacy Maps. arXiv preprint arXiv:1811.10415. Full Text: https://arxiv.org/abs/1811.10415 Abstract Deep brain stimulation (DBS) has the potential to improve the quality of life of people with a...
Inter-Scanner Harmonization of High Angular Resolution DW-MRI using Null Space Deep Learning
Sep. 10, 2018—Vishwesh Nath, Prasanna Parvathaneni, Colin B. Hansen, Allison E. Hainline, Camilo Bermudez, Samuel Remedios, Justin A. Blaber, Kurt G. Schilling, Ilwoo Lyu, Vaibhav Janve, Yurui Gao, Iwona Stepniewska, Baxter P. Rogers, Allen T. Newton, L. Taylor Davis, Jeff Luci, Adam W. Anderson and Bennett A. Landman (Accepted at Computation Diffusion MRI Workshop at MICCAI 2018) Abstract....
Learning Implicit Brain MRI Manifolds with Deep Learning
Dec. 22, 2017—Bermudez, C., Plassard, A.J., Davis, T.L., Newton, A.T., Resnick, S.M., and Landman, B.A. (2017) “Learning implicit brain MRI manifolds with deep learning.” arXiv preprint arXiv:1801.01847 Full Text: https://arxiv.org/pdf/1801.01847.pdf Abstract An important task in image processing and neuroimaging is to extract quantitative information from the acquired images in order to make observations about the presence of disease...