Image Processing Category
Learning from dispersed manual annotations with an optimized data weighting policy
Dec. 7, 2020—Yucheng Tang, Riqiang Gao, Yunqiang Chen, Dashan Gao, Michael R. Savona, Richard G. Abramson, Shunxing Bao, Yuankai Huo and Bennett A. Landman, “Learning from Dispersed Manual Annotations with an Optimized Data Weighting Policy”, Journal of Medical Imaging, 2020. Full Text: Abstract https://pubmed.ncbi.nlm.nih.gov/32775501/ Purpose: Deep learning methods have become essential tools for quantitative interpretation of medical...
Construction of a Multi-Phase Contrast Computed Tomography Kidney Atlas
Dec. 6, 2020—Ho Hin Lee, Yucheng Tang, Kaiwen Xu, Shunxing Bao, Agnes B. Fogo, Raymond Harris, Mark P. de Caestecker, Mattias Heinrich, Jeffrey Spraggins, Yuankai Huo, Bennett A, Landman, Construction of a Multi-Phase Contrast Computed Tomography Kidney Atlas, SPIE 2021 Medical Imaging Full Text Abstract The Human BioMolecular Atlas Program (HuBMAP) seeks to create a molecular atlas at the cellular level of...
Deep Multi-path Network Integrating Incomplete Biomarker and Chest CT Data for Evaluating Lung Cancer Risk
Nov. 25, 2020—Riqiang Gao, Yucheng Tang, Kaiwen Xu, Michael N. Kammer, Sanja L. Antic, Steve Deppen, Kim L. Sandler, Pierre P. Massion, Yuankai Huo, Bennett A. Landman,Deep Multi-path Network Integrating Incomplete Biomarker and Chest CT Data for Evaluating Lung Cancer Risk, SPIE, Medical Imaging, 2021. Full text: https://arxiv.org/abs/2010.09524 Abstract Clinical data elements (CDEs) (e.g., age, smoking history), blood...
Joint cortical surface and structural connectivity analysis of Alzheimer’s Disease
Nov. 20, 2020—Leon Y. Cai, Cailey I. Kerley, Chang Yu, Katherine S. Aboud, Lori L. Beason-Held, Andrea T. Shafer, Susan M. Resnick, Lori C. Jordan, Adam W. Anderson, Kurt G. Schilling, Ilwoo Lyu, Bennett A. Landman. Joint cortical surface and structural connectivity analysis of Alzheimer’s Disease. SPIE Medical Imaging, 2021. Full Text: NIHMSID Abstract Joint independent component...
Tractography reproducibility challenge with empirical data (TRAceD): The 2017 ISMRM diffusion study group challenge
Jan. 17, 2020—Nath V, Schilling KG, Parvathaneni P, Huo Y, Blaber JA, Hainline AE, Barakovic M, Romascano D, Rafael‐Patino J, Frigo M, Girard G. Tractography reproducibility challenge with empirical data (traced): The 2017 ISMRM diffusion study group challenge. Journal of Magnetic Resonance Imaging. 2020 Jan;51(1):234-49. Full text: https://www.ncbi.nlm.nih.gov/pubmed/31179595 Abstract BACKGROUND: Fiber tracking with diffusion-weighted MRI has become an...
Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI
Jan. 17, 2020—Nath V, Schilling KG, Parvathaneni P, Hansen CB, Hainline AE, Huo Y, Blaber JA, Lyu I, Janve V, Gao Y, Stepniewska I, Anderson AW, Landman BA. Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI. Magnetic resonance imaging. 2019 Oct 1;62:220-7. Abstract PURPOSE: Diffusion-weighted magnetic resonance imaging (DW-MRI) is of critical importance...
Diffusion MRI microstructural models in the cervical spinal cord – application, normative values, and correlations with histological analysis
Dec. 16, 2019—Kurt G. Schilling, Samantha By, Haley Feiler, Bailey Box, Kristin P. O’Grady, Atlee Witt, Bennett A. Landman, Seth A. Smith. “Diffusion MRI microstructural models in the cervical spinal cord – application, normative values, and correlations with histological analysis”. NeuroImage. doi: 10.1016/j.neuroimage.2019.116026. 2019. Full text: https://www.ncbi.nlm.nih.gov/pubmed/31326569 Abstract Multi-compartment tissue modeling using diffusion magnetic resonance imaging has proven...
Improved gray matter surface based spatial statistics in neuroimaging studies
May. 21, 2019—Prasanna Parvathaneni; Ilwoo Lyu; Yuankai Huo; Baxter P. Rogers; Kurt G. Schilling; Vishwesh Nath; Justin A Blaber; Allison E Hainline; Adam W Anderson; Neil D. Woodward; Bennett A Landman. “Improved gray matter surface based spatial statistics in neuroimaging studies.” Magnetic Resonance Imaging, 61, 285-295, 2019. Full text Abstract Neuroimaging often involves acquiring high-resolution anatomical images along with...
Towards Machine Learning Prediction of Deep Brain Stimulation (DBS) Intra-operative Efficacy Maps
Dec. 10, 2018—Bermudez, C., Rodriguez, W., Huo, Y., Hainline, A. E., Li, R., Shults, R., … & Landman, B. A. (2018). Towards Machine Learning Prediction of Deep Brain Stimulation (DBS) Intra-operative Efficacy Maps. arXiv preprint arXiv:1811.10415. Full Text: https://arxiv.org/abs/1811.10415 Abstract Deep brain stimulation (DBS) has the potential to improve the quality of life of people with a...
Technology Enablers for Big Data, Multi-Stage Analysis in Medical Image Processing
Oct. 26, 2018—Shunxing Bao, Prasanna Parvathaneni, Yuankai Huo, Yogesh Barve, Andrew J. Plassard, Yuang Yao, Hongyang Sun, Ilwoo Lyu, David H. Zald, Bennett A. Landman and Aniruddha Gokhale. “Technology Enablers for Big Data, Multi-Stage Analysis in Medical Image Processing.” Big Data (Big Data), 2018 IEEE International Conference. (accepted) (acceptance rate 18.9%) Full text: TBD Abstract Big data medical image processing...