Skip to main content

Computed Tomography Category

Learning from dispersed manual annotations with an optimized data weighting policy

Dec. 7, 2020—Yucheng Tang, Riqiang Gao, Yunqiang Chen, Dashan Gao, Michael R. Savona, Richard G. Abramson, Shunxing Bao, Yuankai Huo and Bennett A. Landman, “Learning from Dispersed Manual Annotations with an Optimized Data Weighting Policy”, Journal of Medical Imaging, 2020. Full Text: Abstract https://pubmed.ncbi.nlm.nih.gov/32775501/ Purpose: Deep learning methods have become essential tools for quantitative interpretation of medical...

Read more


Construction of a Multi-Phase Contrast Computed Tomography Kidney Atlas

Dec. 6, 2020—Ho Hin Lee, Yucheng Tang, Kaiwen Xu, Shunxing Bao, Agnes B. Fogo, Raymond Harris, Mark P. de Caestecker, Mattias Heinrich, Jeffrey Spraggins, Yuankai Huo, Bennett A, Landman, Construction of a Multi-Phase Contrast Computed Tomography Kidney Atlas, SPIE 2021 Medical Imaging Full Text Abstract The Human BioMolecular Atlas Program (HuBMAP) seeks to create a molecular atlas at the cellular level of...

Read more


A cross-platform informatics system for the Gut Cell Atlas: integrating from clinical, anatomical and histological data

Dec. 6, 2020—Shunxing Bao, Sophie Chiron, Yucheng Tang, Cody N. Heiser, Austin N. Southard-Smith, Ho Hin Lee, Marisol A. Ramirez, Yuankai Huo, Mary K. Washington, Elizabeth A. Scoville, Joseph T. Roland, Qi Liu, Ken S. Lau, Keith T. Wilson, Lori A. Coburn, Bennett A. Landman, A cross-platform informatics system for the Gut Cell Atlas: integrating from clinical,...

Read more


Multi-path x-D Recurrent Neural Networks for Collaborative Image Classification

Nov. 25, 2020—Riqiang Gao, Yuankai Huo, Shunxing Bao, Yucheng Tang, Sanja L. Antic, Emily S. Epstein, Steve Deppen, Alexis B. Paulson, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman,Multi-path x-D Recurrent Neural Networks for Collaborative Image Classification. Neurocomputing, 2020. Full Text: https://doi.org/10.1016/j.neucom.2020.02.033 Abstract With the rapid development of image acquisition and storage, multiple images per class are...

Read more


Renal Cortex, Medulla and Pelvicaliceal System Segmentation on Arterial Phase CT Images with Random Patch-based Networks

Nov. 21, 2020—Yucheng Tang, Riqiang Gao, Ho Hin Lee, Brent V. Savoie, Shunxing Bao, Yuankai Huo, Jeffrey Spraggins and Bennett A, Landman, Renal Cortex, Medulla, Pelvis Segmentation on Arterial Phase CT Images with Random Patch-based Networks, SPIE 2021 Medical Imaging Full Text Abstract Renal segmentation on contrast-enhanced computed tomography (CT) provides distinct spatial context and morphology. Current studies for renal segmentations...

Read more


Development and Characterization of a Chest CT Atlas

Oct. 13, 2020—Kaiwen Xu, Riqiang Gao, Mirza S. Khan, Shunxing Bao, Yucheng Tang, Steve A. Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Mattias P. Heinrich, Bennett A. Landman. Development and characterization of a chest CT atlas. SPIE Medical Imaging, 2021. Full text: https://arxiv.org/abs/2012.03124 Abstract A major goal of lung cancer screening is to identify individuals...

Read more


Extracting 2D weak labels from volume labels using multiple instance learning in CT hemorrhage detection

Jan. 2, 2020—Remedios, S. W., Wu, Z., Bermudez, C., Kerley, C. I., Roy, S., Patel, M. B., Butman, J. A., Landman, B. A., Pham, D. L. (2019). Extracting 2D weak labels from volume labels using multiple instance learning in CT hemorrhage detection. arXiv preprint arXiv:1911.05650. Full Text: Arxiv Link Abstract Multiple instance learning (MIL) is a supervised learning methodology...

Read more


Distributed Deep Learning Across Multisite Datasets for Generalized CT Hemorrhage Segmentation

Jan. 2, 2020—Remedios, S. W., Roy, S., Bermudez, C., Patel, M. B., Butman, J. A., Landman, B. A., & Pham, D. L. (2019). Distributed Deep Learning Across Multi‐site Datasets for Generalized CT Hemorrhage Segmentation. Medical physics. Full Text: Pubmed Link Abstract Purpose: As deep neural networks achieve more success in the wide field of computer vision, greater emphasis is...

Read more


Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury

Jan. 2, 2020—Remedios, Samuel, et al. “Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury.” Medical Imaging 2019: Image Processing. Vol. 10949. International Society for Optics and Photonics, 2019. Full text: PubMed Link Abstract Machine learning models are becoming commonplace in the domain of medical imaging, and with these methods comes an ever-increasing need...

Read more


Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision

Dec. 19, 2019—Ho Hin Lee, Yucheng Tang, Olivia Tang, Yuchen Xu, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman, “Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision”, SPIE MI:IP 2020. Houston, TX. Link: https://arxiv.org/abs/1911.05113 Abstract Human in-the-loop quality assurance (QA) is typically performed after medical image segmentation to ensure that...

Read more